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An axisymmetric mixed problem of the theory of elasticity for a half-space 
with a hemispherical indentation of radius ,J < 1 is considered. The boundary 

of the half-space is acted upon by a plane circular stamp of unit radius, coax- 
ial with the indentation and covering it completely. There is no friction betw- 

een the stamp and the half-space. The problem is solved for three cases: the 
indentation may be empty, or filled with either a perfectly rigid, or a perfectly 
elastic medium. The solution is constructed in the form of series in terms of 

the homogeneous solutions of the mixed problem for a half-space, and the 
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arbitrary constants appearing in the series are obtained from the normal systems 

of algebraic equations. The concentration of stresses at the stamp edge is stud- 

ied and a formula obtained relating to the depth of impression of the stamp and 

the force applied. 

1, A plane circular stamp n is pressed without friction by a force T onto an elastic 
half-space B containing a hemispherical indentation and to the hemisphere C,which 

may be: (a) empty. (b) perfectly rigid or (c) elastic. The case (b) wi 11 be regarded 

as that of an action exerted by the stamp ;(iC with the frictional forces absent from its 

whole surface (see Fig. 1). 

IT Let us construct a subsystem of homogen- 

1 
eous solutions with a singularity at the point 

t 

r = (7, satisfying the following mixed con- 

ditions at the boundary 0 = risnof the half- 

space: 

GO =u0=0 (O,<f<i), 

Go =&I=0 (l<f<oo) (W 

Fig. 1. 
When r,o = 140 = 0 on the whole of the 

boundary plane, the homogeneous solutions 

for the half-space are given by the zeros of the Legendre function I’,’ (O)and have the 

form p] 

xl&’ (r, 0) = - r 
-2~ k (Zk + 3 - 4s) 

k-2++; pal, (5) Ak + (2k - 1) p2k-2 (5) Bk) 

2Gl.&’ (f, 9) = l--IL (I”;k (2) A, t- #k-a (z) &} 
(1.2) 

(Z,= COS 0) 

Here&! = 1,2 , . ..,i. e, the only displacements given here are those which become 

infinite when r = 0. Each element of the given subsystem can be sought as a sum of 

the solution (1.2). and of the solution of the following mixed problem: 
? r~ = 0 (0 < r < 00, 0 = s/0) (1.3) 

Uo = 0 (0 = ‘/m. 0 g r 6 1); a0 = - aek’ (r, r&r) (0 = %z, 1< r < 00) 
The latter solution is obtained in the same manner as the solution of the problem given 

in f31 and is 

2Gu;” (r, 0) = & \ Ek (Y) [tap” (ix) -j- (Y + 2) (v -j- 5 - 4s) Pv,2 (x)] r-y-2dzt 
i 

2GuiZ (r, 0) = - &s E,(Y) [(V + I)-‘@,’ (.?+) -I- tr’:,, (.?.)I r-‘-‘f/Y (i..i) 
L 

d?& (v) = 
[ok+ (v) + ok- (v)] r (I/? - ‘/:v) 1‘(1 -;- ‘/?Y) 

y-n (v + 1) (5 _t 3) 

t =y- 2 + 46, t, = (v -t 2)” - 2 (1 - 0) 

Here the contour h passes to the left of the straight line lie v ::= _3, while the e%11! 

obtained function uk- (v) is OCI 

isk- (v) = - 
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p,Jc (0) Ak + (2k - 1)’ PDh.._2 (0) Bk} rY-2k+1 dr = (1.5) 

1 
_ ktl - 1) II 

= (v : :I-- 2;k(2k - 2) II 

The unknown functions 

satisfy the Wiener-Hopf equation 

‘%t+ @) + ok- (v) = K (v) uk- (v) 

K (v) = - G (I+ v) (2 + 9 r (- W) r p/a + l/e) 
2 (1 - a) r (2 + yAv) r (l/r - 1/s3J) 

(1.7) 

Using the factorization [S] 

K+ (Y) = r (2 + lb9 
r iah + w) (1.8) 

we transform (1.7) and introduce the function [4] 

Ja (v) = [ok+ (V) + Gk- (V)] K+ (V) - ak- (V) K+ (2k - 2) = 
= uk- (V) K- (V) i Gl; (V) K+ (2k - 2) 

regular over the whole v -plane. 

(1.9) 

Estimating the growth of the terms which takes place when IV 1 + 00 with the aid of 

the Stirling formula for the gamma function and of the generalized Liouville theorem 

we find that Jk (Y) = Ch.We therefore have, in accordance with (1.9). (1.5) and (1.8) 

ok+ (v) + ak- (y) = (1.10) 
c r (ah + w (-1) 2k- 

r (2 + w) 
ck _ 

I/;i(v + 2 - 2k) 

(2k-I)*-2(1-a) Ak 

2 (k- 2 + 2s) - (2k - 1) BE]} 

For the fruitful utilization of the homogeneous solutions of (1.1) it is important that 

they are self-balancing when r > 1. This condition can be fulfilled as the constant 
ck can be chosen in an arbitrary manner. Expanding the integrals in (1.4) into series 

in residues with r > 1 we find that the principal stress vectors different from zero will 

contain stresses generated by only two poles, namelyv = 2k - 2and v = -1. The 
first ones are balanced by the solution (1.2) and the residues at the point Y = -1 van- 

ish whena,+ (-1) + ai- (-1) = O,_i. e. by (1.10) together witb 

Ck = 
(-1)” 2k 

V/n(i - 2k) 1 

.(2k - l)a - 2 (1 -a) A 

2 (k -2+2O)i ’ 
- (2k - 1) &,I (1.11) 

Combining the solutions (1.2) and (1.4) and computing the stresses we finally obtain 
(k = 1, 2, . ..) 

2&i”’ (r, 0) = - 1;2k [k ‘,“:iz,“;;“’ P2k (Z) ‘ik + (2k - 1) pak-2 (5) Bkj + 

+ El, (v) [t$” (5) + (v + 2) (Y + 5 - 43) p,,, @)] ,-“-* dv 
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2GuT’ (r, 0) = fak [ f$k (4 Aa -i- &-p (5) Bk] - (1.12) 

- G-5 El, (Y) ,[ta (Y + 1)” P,’ (z) + tP:+.J (s)] f’-2 dv 
.L 

J2k) (r, e) = _ r-2k-’ ( 6 - 1) 1(z,k-4-s2 (I - @I 
P2k (5) Ak + 

“t- (?k - 1)‘Pak-l(x) Bk + ctg 0 [p:k (5) Ak + p:-2 (5) Bkj} + 

+& 
5 

Ek (v) (t2 [@ f I) p” @) + @ + 1)-’ ctf? ep,’ @)I - 

- (v + 2) [(v + I)2 - 2 (1 - a)] P,+z (z) - t ctg 8P,‘+2 (x)} i’-3dv 

#(r, 0) = _r-w-OA-~+~ I 
1 k-,2+2a P2k (5) Ak + 2kP,‘k-2 (5) Bk 1 + 

G;k’ (r, (j) = 2f2’-lk [‘2k + ; F;;y2; 1 - ’ P,, (5) A, + (2k - 1) p2k-2 (X) Bk] - 

- &\ E, (i) (y + 2) {G’, (2) + [(y + 2) @ + 5) - 251 Pvt2 (41 ,-y-’ dv 

i 

4kR) (r, 0) + Gik) (r, 6) = 

= _ 2r-2”-‘k (A--1)(2k+l)+2-4ks 
p2k (5) llk + (2h- - 1) p2k-2 @) Bk] -!- 

+ &- [ Ek (V) (2: + &..;:,;+ [V(V + 3) + 4 - 40 (V + 2)] P,+z (X)} r-v-3 dv 
i: 
(--l)“‘k(vf 1)([(2k-i)z-2(t -o)] rih.‘-2(2k--)(k--+f23)Bb} 

Ek(V) = - 
(2k - 1) (k - 2 + 25) (UC - 2 - v) (v + 2) (2v + 3) Cos (‘/am’) 

(1.13) 

Comparison of these expressions with(l.41) of 133 shows that they represent the homog- 
eneous solution of (1.1) with the principal vector T # 0 if we set k = 0, A, = 
=B ,, = 0 and 

E,(v) = - 
T 

4 (2 + v) (a<-+ 3) cos (‘/#Xv) (1.14) 

The normal stresses and displacements at the boundary near the line separating the 
conditions can be obtained, as in fl], with the help of contour integration and asymp- 

totic estimates and have the following form (k > 1): 

for r-i-0 

4 (1 - a) k (4)’ 1/2 (r - 1) >? 
nG(2k-1) 

(2k-1)2-2(1-s) A 

2(k- 2 + 2a) h’ -(2k-i)Bk} for r-i+0 

T T(1 - 
2nJQpyq ’ 

G) V2(r--1) (1.15) 
2nC 
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2. We seek the solutions of the problems (a) and (b) determined by the initial cond- 
itions 

‘ITO =uo = 0 (P<r <i, 0 =l/2n) TrO = GO = 0 (l<r <GY, 8 =r/zn) (2.1) 

a) +I = 0, = 0, 6) fre = u, = 0 (0 < 8 < vzn, r = P) (2.2) 

in the form of series 

Us = i U(,k)(r, e>, 24, = i U$k’ (r, 0) (2.3) 
k=o k=o 

which at once satisfy the conditions (2.1) and the condition of equilibrium. The Jordan 
lemma and the theorem of residues make possible the replacement of the integrals in 
(1.12), in the case when r = gwith the residue series written in terms of the negative 

zeros of the function cos (i/snv).This yields 

2Gu0” (p, 8) = ~-2~ [P:k (s) Ak -I- P:k_2 (5) Bk] + (2.4) 
CD 

+ 2 Ek* 01) ( (2n A :,;,y - a) 
n=o 

P;n+2 (5) + (2n + 5 - 45) Jtn(x)) p-=+1 

2 GuFk) (p, 0) = - p-2k [k ;\-;-$) P,I; (5) Ak + (2k - 1) P:k-2 (5) Bk] + 

-+ i Eh.* (n) (((2~ + 1)2-2(l--a)] Pz,,+2(~)+ (2n+1)(2n-2+4~) P&)}o~~+~ 
ll=O 

(2.5) 

T;;’ (,o, 0) = - p-““-I [ y_;y2,” P;k (5) A, + 2kP;k-2 (3) BI] + (2.6) 

+ i E,* (n) [(2n + I)‘- 2 (1 - a)] [e P:tI+S (x) + P:,(z)] pa” 
-0 

obk) (p, 0) = 2p-‘“-lk 
f 

2k2+3k-a 
k _ 2 + 2a P2k @) Ak + (2’C - 1) p2k-2 (z) Bk 1 + (2.7) 

+ i Ek*(n)(2n + i)[(4n2 +h- 1 + 25)p2n+%(z) + 
?I=0 

+ (4n2 - 2n - 2 - 20) p2, (41 Pan 
Ek* (n) = 

= 
4 (-l)k+n+l k (n + 1) [(4k’- 4k - 1 + 2s) Ati - 2 (2k - 1) (k - 2 + 2a) BkJ 

,n (2k - 1) (2n + 1) (2k + 2n + 1) (k - 2 + 26) (4n + 3) (k > 1) 

lz,* (n) ‘= 
(-I)* T 

2n (hi + 1) (4n -+ 3) (2.8) 

Let us insert the formulas (2. 5) - (2.7) into solutions (2.3) and conditions (2.2) and 
change the order of summation in the double series. Comparing the coefficients of the 

functions Pzk (L1.) and & (x) (k = 0, 1, . ..) we obtain the following infinite systems 

of algebraic equations: 

%~I,, + ; fo, nPzn+1&t,3 = go 
n=1 

(2.9) 

(s = 1.2; k =1,2....) 
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Here for both problems we have 

x k,s= p 
-2k-1 

[ 

(2k- 1)‘-22(1 --a) A, _ 2jjk 
(2k - 1) (k - 2 $25) 1 , xk rl = q,-2k-1~,k (2 11) . 

a, = v2, ap=h’+ 1, br' = Gk--1)W-- i+ a) 
(2k - I)’ - 2 (1 - Q) 

C1j _ T (-1)’ p2’ - 

/(il,jn _tl)y+q 
c 

(2k+i)“-2((1-0) _ (2k-i)2-2(2-~) 

(2k + 1) (4k + 3) p%k (4k - 1) 1 
(2k + 2) [(2k + 1)2 - 2 (1 - Q)] (2k - i)2 - 2 (1 - a) 
(2/c + 1) (4k + 3) (2k + 2n + 1) - pa (4k - 1) (2k + 2n - 1) 1 

Moreover, for the problem (a) we have 
u(k2) = - (Ic + 1) (2h.f 1) 

g?’ = T (-l)kp2k 2k (2k - 1) - 2 (1 + 6) _ (2k - i)a - 2 (1 - 0) 
2TI 4k + 3 pa (4k - 1) I 

(2.12) 

T (1 + 4 go = 3x , bf’ = - 2k (2k - 1) [ (2k + 1) (k + 1) -(i + G)] 
(2k - 1)s - 2 (1 - G) 

fo, n = 
4 (-l)n+l(l + 3) n 

3n (2n + 1) 

f (2) (-1) k+n+l 212 
$78 = x L { 

(2k + 2) [(2k - 1) 2k - 2 (1 + o)] 2k [ (2k - i)2 - 2 (i - o)] 

(4k + 3) (2k + 2n + 1) -\p2(4k - 1) (Zk + 2n - 1) 

and for the problem (b) 

at’ 
2k + 1 

=-, 
?. 

gp = T (A)’ p2’ 
2n [ 

2k - 2 + 40 _ (;;(-kl)2 - 2 (i - a) 
4k + 3 - 1) (2k - 1) 1 (2.13) 

T(l - 2G) 
go = - 3z 9 

g) = k@k--1)(2k+3--~) f. n = s(--l)n(1--5)n 
(2k-l)2-2(l-o) ’ ’ 3n (2n + 1) 

f (2) 2k[(2k-11)2-2((1-6)~ ’ 
k,n = 

2n (-l)k+n+l 

1 

(2k + 2) (2k - 2 + 46) 
rt (4k + 3) (2k + 2n + 1) - pa (4k - 1) (2k - 1) (2k + 2n - 1) i 

Let us reduce the system (2.9) and (2.10) to its canonical form. Eliminating from (2.10) 

the unknowns Xlh.,% and Xx+1,4 with s = 1, 2 respectively, we obtain (It = 1, 2, . ..) 

(apb;2) - a i%?) Xk+l, 4 + ; (fp$$Q - fp,p) p2k+2n+5yn 3 = 

?I=1 
= gp@’ _ gpp (2.14) 

(Up’@ - t$)bf)) (X,, 3 + Xk, 4) + 5 (f;,)nL#) - fj$,@)) p2k+2fl+1&,, s = 

n=l 
= gpup _ gpulr’) (2.15) 

Next we use (2.15) to eliminate the unknown x1$, from (2.9). We replace k in (2.15) 
with k + 1 and eliminate Xk+1,4 from (2.14). This yields (1; = 1, 2, . ..) 
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Obviously the double series of the matrix of this system converges absolutely for all 

p < 1 and the moduli of its free terms are bounded. Thus the system (2.16) is rela- 

ted to the normal Poincar&Koch systems [5]. By a verbatim repetition of the argum - 

ents from the Sect. 2 of [1] we conclude that in both cases, (a) and (b). solutions of this 
system exist, are unique and can be obtained using the Cramer method. When k is lar- 

ge we have Al, and Bh. N kp4’. 
It must be noted that the system (2.16) only contains the unknowns xk, s ; the unkno- 

wns’X,, 4 are obtained from (2.9) and (2.14). This makes it possible to obtain a solut- 

ion for the truncated system (2.15) with twice the number of the correct signs as com- 

pared with the solution obtained from the system (2.9), (2.10) truncated at the terms 

of the same order. We also note that the problem (a) can easily be generalized to the 
case in which arbitrary loads are applied to the spherical part of the boundary of the 

helf-space, while the problem (b) can be generalized to the case in which the spheri- 
cal part of the stamp AC differs somewhat from the indentation, i. e. in which u, = 
= f (f3) when r = p. In the latter case the function f (e), which appears in the cond- 
ition (2.2) must be expanded into a series in Legendre polynomials of even degree, 
otherwise the procedure remains the same. 

In conclusion let us write a formula connecting the depth of the indeutation 6 made by 
the stamp with the force Tapplied 

2G6 = 2Gu, led = (2.17) 
t-00 

=limi-$S 
r-.0=k,s 2xr L 

E, (v) [tap” (1) + (v + 2) (Y + 5 - 45) pv+a (l)] f”‘h = 

T(1-CJ) - 5” 
-~)(--1)k{[(2k-+-2((1-~)]Ak-2(2k-i)(k-2+225)Bk} 

=- 
2 

‘k=l 
(2 - 1) (k - 2 + 26) 

3. Let us consider the case(c). Retaining the previous G and o for the region B I 
we denote the constants for the region C by G, and or. In the region B we shall seek 
the solutions in the form of (2.3). and in C in the form of series in homogeneous solu- 

tions satisfying the conditionsr,a = ui = Owhen 0 = r/,,zwith a singularity at infin- 

ity PI 

m 2G,u, = (2k+1)(2k-2+4s~)r2kt1C +2k 

2k + 5 - 4~1 k r2k-‘& 
1 

P,, (z) 

2G,uo = ; [ ?k+l&. + ,2k-1Dk] & (5) 
k=l 

(3.1) 

In this case both the condition of equilibrium and the boundary conditions 

&I = r,o = 0 (0 < r < 1, 0 = ‘/:;I), Go = -fro = 0 (1 < r < 03, 0 = l/in) 



hessute of a plane circular stamp on an elastic half-space 623 

of the problem ‘(c) will be satisfied. Let us now comply with the i&r conditions of con- 

jugacy of the solutions (2.3) and (3.1) on the hemisphere 0 < 0 < l/sx, r = 

= P (P < 1). 
Using the expansions (2.4) - (2.7) and comparing again the factors accompanying the 

functions Pw (s)and P 2k1 (z),we obtain the following system of equations: 

5 df;Xk,P + d/ttYr+l, 4 -j- ; q~f,~np~~+~*+~X,,, 3 = h(ki) (k = 0, i, . . .) (3.2) 
p-1 n-=1 

Whenk=O i=1,2,whileforFt>lwehaveZ=1,2,3,4andthefollowing 

notation introduced 

xk.1” P2KCkI 
zk-2 

X’k,s=f’ Dk, xk, 3 = f’-2k-1 [{ii - ;;;; 2 a;$ Lik - 2B,] - - 

Xk, 0. =‘2p-2k-1Bk, d$’ = - ,,:;-2J,1, ) , d$) = d;;) = d&J = 0 

dg) = d(2) o3 = dg) r, 0 

&’ = -!- 4G , +$I = 
4 (-l)n(i - 2s) n 

3nG (2n + 1) 
, (3.3) 

&I = 1 + 61 &’ = 1 I 
5' 

(2’ 
2) Ton = 

4 (-Vntl (1 + 0) n , 
3x (2n + 1) 

,,+a) = * U + a) 
0 3n 

$1 1 
,‘r = &s’ = - m, d(l) k3 = d’k’a = (2k - 1) (k - 2 + 26) 2G [ (2k - 1)2 - 2 (I - a)] ’ &’ = -!_ 

4G 

(2k + 2) (215 + 4 - 40) 
(4k + 3) (2k $3) (2k’+ 2n + 1) + 

- - 

+ (2k 1)z 2 (i -6) pz (4k - 1) (2k - 1) (2k + 2n - I) 1 hp. = * WI”+’ P*’ 2kf5-4a (2k - I)2 - 2 (i - a) 
4nG (4k + 3) (2k + 1) - pa (4k - 1) (2k - 1) 2k _ 1 

&.$ (2k + 1) (2k - 2 + 461) 
(2k + 5 - 401) 2Gr ’ 

d(2) ’ 
k2 = - 

Gi 

@ = &; = 
k (2k - 1) (2k + 3 - 45) 

2G((2k-i)a-2(i-e)] ’ 
&’ = 2k + * 

4G 

1 
2k - 2 + 43 (2k - 1)s - 2 (i _ -0) 

dp- = (2k + 1) ‘[ 2k (2k - 1) - 2 (1 + a,)] 
2k+5-44al, 9 d$ = 2k (2k - 1) 

dc’ = - W+ 2)(2k+ 1) , 
2 

dj;7,’ = ;(s 1 
- - 

2k W - 1) [@k + 1) (k + i) - (1 -t 611 
k4 (2k - I)* - 2 (1 - G) 

9!z = (-l)k+n+r 2n J 4 (k + 1) [k (2k - 1) - 1 - a] 
(4k + 3) (2k + 2n + 1) 

_ 2k [ (2k - I)* - 2 (1 - a)] 
rr 

I pa (4k - 1) (2k + 2n - i) 

his) = 2k(2k-i)--((ifa) _ (2k--)*---(I--) 
4k+3 p’(4k - 1) I 

di’=k+l, - dfi) _ P +i)‘--2 (1 - al) 
Zkf5-4sl 
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dtj = d& = tzk - ‘1 t2” - 1 i- al 
(2k-1)2-2(1-G) 

(?!A = 
b-1) k+n+12~ (2k+2)[(2k+l)z-2((1-G)] 

x [(2k + 1) (4k + 3) (Zf; + 2n + 1) - p’((zij2(2k2J2z)q 

@’ = (2k+l)a-2(1 -G) _ (2k-l)2-2(l-cs) 

(2k + 1) (4k + 3) pWc (4k - 1) 3 

Eliminating now the unknowns x’ k,l and Xh,2, from the corresponding groups of Eqs. 
(3.2) each group corresponding to a single value of li,we obtain (2.9) and (2.10) in 

which 

ap’ = i df’& , bt’= i d;jD’,‘b’, f(on = i rp;iDfs’, gf’ = &$~L$; 
i==l t=1 i=l i=l 

Here 0;: denote the algebraic complements of the elements &i 

d& d$ 0 0 

dt: dii2,’ 0 0 

0 0 - d$ (4) 
- dk2 

0 0 - diy (4) 
- &I 

Thus in the case (c) only one fourth of the unknowns, namely the ones entering the 

solutions (2.3) and(3.1). need be obtained from the normal system of algebraic equat- 
ions (2.16). The depth of impression of the stamp is again given by (2.17). 
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